

Artificial Intelligence and Optimization in Medical Sciences

نسيبه رادى راز

Nasibeh Rady Raz

PhD in Artificial Intelligence and Robotics

Department of Artificial Intelligence in Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

radyraz.n@iums.ac.ir

••

عنوان دوره **آنلاین:** هوش مصنوعی در پزشکی با رویکرد بالینی **Online Course: Artificial Intelligence in** Medicine with Clinical Approach

Course Topics	عناوین بیست و چهار جلسه	تاريخ جلسات
Artificial Intelligence (AI) in medicine	معرفی هوش مصنوعی در پزشکی	۲۸ بهمن ۱۴۰۲
AI and Fuzzy systems and its applications in medicine	هوش مصنوعی و سیستم های فازی در پزشکی	۵ اسفند ۱۴۰۲
Machine Learning and its applications in medicine	یادگیری ماشین و کاربردهای آن در پزشکی	۱۲ اسفند۱۴۰۲
Evolutionary systems and its applications in medicine	الگوریتم های بهینه سازی تکاملی و کاربردهای آن در پزشکی	۱۹ اسفند ۱۴۰۲
Neural networks and deep neural networks in medicine	شبکه های عصبی و شبکه های عصبی عمیق در پزشکی	۲۵ فروردین ۱۴۰۳
Application of AI in Early Detection of Disease	کاربرد هوش مصنوعی در تشخیص زودهنگام بیماری ها	۱ اردیبهشت ۱۴۰۳
Swarm Intelligence and multi-agent/swarm in medicine	هوش ازدحامی، سیستم های چند عامله/ازدحامی در پزشکی	۸اردیبهشت ۱۴۰۳
Application of AI in Cancer	کاربردهای هوش مصنوعی در سرطان	۲۲ اردیبهشت ۱۴۰۳
Application of AI in surgery	کاربردهای هوش مصنوعی در جراحی	۲۹ اردیبهشت ۱۴۰۳
Applications of AI in Neurology	کاربردهای هوش مصنوعی در مغز و اعصاب	۵ خرداد ۱۴۰۳
Application of AI in Internal Medicine	کاربردهای هوش مصنوعی در پزشکی داخلی	۱۲ خرداد ۱۴۰۳
Applications of AI in cardiovascular	کاربردهای هوش مصنوعی در قلب و عروق	۱۹ خرداد ۱۴۰۳
Applications of AI in Breast Disease	کاربردهای هوش مصنوعی در بیماری های پستان	۲۶ خرداد ۱۴۰۳
Application of AI in Ophthalmology	کاربردهای هوش مصنوعی در چشم پزشکی	۲ تیر ۱۴۰۳
Application of AI in Nephrology	کاربردهای هوش مصنوعی در نفرولوژی	۹ تیر ۱۴۰۳
Application of AI in Otorhinolaryngology	کاربردهای هوش مصنوعی در گوش و حلق و بینی	۱۶ تیر ۱۴۰۳
Application of AI in Gynecology and obstetrics	کاربردهای هوش مصنوعی در زنان و مامایی	۲۳ تیر ۱۴۰۳
Application of AI in pediatric medicine	کاربردهای هوش مصنوعی در پزشکی اطفال	۳۰ تیر ۱۴۰۳
Application of AI in anesthesia	کاربردهای هوش مصنوعی در بیهوشی	۶ مرداد ۱۴۰۳
Application of AI in emergency medicine	کاربردهای هوش مصنوعی در پزشکی اورژانس	۱۴۰۳ مرداد ۱۴۰۳
Applications of artificial intelligence in orthopedics	کاربردهای هوش مصنوعی در ارتوپدی	۲۰ مرداد ۱۴۰۳
Application of AI in pain management	کاربردهای هوش مصنوعی در مدیریت درد	۲۷ مرداد ۱۴۰۳
Application of AI in pharmacology	کاربردهای هوش مصنوعی در داروسازی	۳ شهریور ۱۴۰۳
Application of AI in dentistry	کاربردهای هوش مصنوعی در دندان پزشکی	۱۰ شهریور ۱۴۰۳

Artificial Intelligence

Al is a multidisciplinary field of study dealing with intelligence, perceiving, and inferring information by machines.

Narrow AI: is used to solve a specific problem. General AI: is used for solving general problems. Super AI: Nobody knows what will happen.

Artificial Intelligence

Aspect of Intelligence

- Generalization
- learning/adapting
- Optimization
- Social Interaction
- Cognition

ML in medicine

You may face ...

- Extensive emergency department boarding, including overnight holds
- Crowded surgical units, especially on weekends
- High or low occupancy units
- Hallway placement of inpatients
- Bottleneck units
- High readmission rates to particular units
- The excessively long length of stay, particularly in higher levels of care

Not able to align hospital capacity with patient demand

- system stress
- widespread waste and inefficiency
- Overcrowding
- readmissions
- medical errors,
- hospital-acquired infections
- delays,
- lack of preferred beds,
- cancellations,
- underutilization of existing resources
- inflated cost,
- nurse and physician burnout.

traditional solutions is to add more physical

capacity or increase staffing

Optimization

The act of making the best or most effective use of a situation or resource.

but how is it achieved in real time?

Optimizing workflows at hospital

Through using optimization

- Eliminating unnecessary peaks and valleys in their patient flow
- Increasing the number of patients that can be treated
- Reducing nursing overload, overtime, and turnover
- Achieving maximum compliance with patient-per-nurse ratios without hiring new staff
- Assuring patients are placed in the correct beds
- Improving patient, doctor, and nurse satisfaction
- Improving the quality and safety of patient care
- Reducing patient wait times for services
- Reducing hospital overcrowding
- Lower overall hospital length of stay

What is optimization?

• The decision-making process consists of three steps:

Local and Global

Optimization

Optimization by Nature

- Using nature-inspired algorithms.
- These are rooted in biology, ethology and physics.
- Such as
 - evolutionary and genetic algorithms that stem from biology;
 - particle swarm,
 - Leaping frogs and their fly-hunting process,
 - migrating birds and their exchange of leadership roles during long-distance flights,
 - honey-bees with their communication dance for their colonies about sweet flowers,
 - spiders with their web-based communication,
 - Cukoos' clever use of other birds' nests to host their eggs,
 - ants with their pheromone and stigmergic communication,
 - bacteria with their foraging behavior
 - as well as those that imitate the laws of physics such as magnetism and gravity.
- This list is endless.

Optimization by Nature

Ant's stimmouris bahavior in finding the shore

GA Algorithm

PSO

Leaping frogs

Cuckoo search (CS)

- Cuckoo search (CS) uses the following representations:
- Each egg in a nest represents a solution, and a cuckoo egg represents a new solution. The aim is to use new and potentially better solutions (cuckoos) to replace a not-sogood solution in the nests. In the simplest form, each nest has one egg. The algorithm can be extended to more complicated cases in which each nest has multiple eggs representing a set of solutions.
- CS is based on three idealized rules:
 - Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest;
 - The best nests with high-quality of eggs will carry over to the next generation;
 - The number of available hosts' nests is fixed, and the egg laid by a cuckoo is discovered by the host bird with a probability (0,1). In this case, the host bird can throw the egg away/abandon the nest, and build a completely new nest.

Ant Colony Optimization

Migrating Birds Optimization

Bee Algorithm from B Denting area for Endoading metar from A

Spiders Optimization

Bacteria Optimization

Optimization by Nature

 Physics has also been a great source of inspiration such as in spin glasses and their temperature-based magnetic behavior, as well as gravitational forces, quantum-inspired variable coding and operations, and water drops and their path formation towards rivers.

Spin Glass

Ferromagnetic

Anti-ferromagnetic

Spin Glass

Gravitational Search

Exploration and Exploitation

- Exploration and Exploitation are two main functions in almost any optimization process.
- Competition among solution decomposing solutions into several sub-solutions random motion for better exploration and recombining genetic codes for better exploration.
- Some of these involve parametric operators and some are structure alternating behaviors.

Healogics Photo+: Automate Wound Measurement

Identifying patients with sepsis at the right time

• Identify at-risk patient 6 hours earlier from EHR

Feature

Feature selection/engineering /reduction

Genetic algorithm for the optimization of features and neural networks in ECG signals classification

دانتگاه علوم نرشگی و خدمات بهداشتی، دیانی ایران

Optimization in Healthcare Scheduling

ICU/operating Room Scheduling

Two-stage multi-objective optimization for ICU bed allocation under multiple sources of uncertainty, <u>Scientific Reports</u> **volume 13**, Article number: 18925 (2023)

Physician Scheduling Optimization

Optimization of an appointment scheduling problem for healthcare systems based on the quality of fairness service using whale optimization algorithm and NSGA-II, <u>Scientific</u> <u>Reports</u> volume 11, Article number: 19816 (2021) 43

Laboratory Scheduling Optimization

Optimal Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints, SLAS Technology Volume 26, Issue 6, December 2021, Pages 650-659 44

Nurse Scheduling Optimization

Factors in Nurse Scheduling

Hard Constraint

- [H1] Each nurse is available to work only one shift a day
- [H2] Maximum of three night shifts per two weeks
- [H3] Unavailable for a morning shift after a night shift.

Soft Constraint

- [C1] Fairness in working shifts and day off among nurses.
- [C2] Preference hospital based on working shift for each day.
- [C3] At least each nurse is given one day off per week.
- [C4] At least one experienced nurse is allocated for each working shift for one day.
- [C5] Attempt to give a day off after the night shift.
- [C6] At least three-night shifts per two weeks for each nurse.

PSO Solution

- 1. Particle: represented by a nurse schedule
- 2. Search Space: contains the pattern of a nurse schedule that is generated randomly.
- 3. Fitness Value: represented by value of a schedule that is generated randomly that follows the constraints
- 4. Velocity: represented by path direction value of the particle (schedule)
- 5. Personal Best: represented by minimum fitness value of a particle in the local population
- 6. Global Best: represented by minimum fitness value of a particle in the global population
- 7. Best Fitness: represented by as fitness value that reaches 0 where PSO has optimised the nurse schedule that follows all the constraints.

Table 2 : Nurse scheduling is done manually

Nurses /Days	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	0	м	F	N
1	0	N	0	м	0	E	E	0	N	м	4	2	2	2
2	0	N	м	N	0	F	м	0	0	F	4	2	2	2
3	0	N	M	N	F	F	M	0	0	0	4	2	2	2
4	F	0	M	N	м	0	F	0	0	N	4	2	2	2
5	F	0	M	0	N	0	0	м	F	N	4	2	2	2
6	м	0	M	0	N	0	0	E	E	N	4	2	2	2
7	0	E	м	0	N	N	0	E	м	0	4	2	2	2
8	E	E	м	0	0	N	N	м	0	0	4	2	2	2
9	м	F	0	0	0	N	N	м	0	F	4	2	2	2
10	N	м	0	F	0	0	N	0	F	м	4	2	2	2
11	N	0	0	м	F	0	0	N	F	м	4	2	2	2
12	N	0	м	0	F	0	0	N	м	F	4	2	2	2
13	0	0	м	F	м	F	0	N	N	0	4	2	2	2
14	0	N	M	F	0	F	м	0	N	0	4	2	2	2
0	5	5	4	5	5	5	5	5	5	5		2	2	2
M	2	1	3	2	2	0	3	3	2	3				
F	3	3	0	3	3	3	2	2	3	3				
N	3	3	0	3	3	3	3	3	3	3				
Q	2.712	2.838	2.914	2.712	2.712	2.712	2.712	2.712	3.002	3.002				

Expert Less experience

Table 4: Nurse scheduling	optimise	by PSO
---------------------------	----------	--------

							· · · · ·							
Nurses /Days	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	0	М	Е	N
1	Е	Е	N	0	М	0	N	М	0	0	4	2	2	2
2	М	Е	N	М	0	0	0	N	0	Е	4	2	2	2
3	М	N	0	0	0	Е	0	Е	N	М	4	2	2	2
4	0	Е	N	Е	М	М	N	0	0	0	4	2	2	2
5	0	0	0	N	М	N	0	Е	Е	М	4	2	2	2
6	N	М	0	0	0	0	Е	N	Е	М	4	2	2	2
7	0	0	Е	N	N	Е	0	0	М	М	4	2	2	2
8	N	N	0	0	Е	0	0	М	М	Е	4	2	2	2
9	0	N	Е	N	0	М	Е	0	0	М	4	2	2	2
10	М	0	0	0	Е	М	Е	N	N	0	4	2	2	2
11	N	М	Е	М	Е	0	N	0	0	0	4	2	2	2
12	Е	0	М	М	N	Е	0	0	N	0	4	2	2	2
13	0	0	М	Е	0	N	М	Е	0	N	4	2	2	2
14	Е	М	М	Е	N	N	0	0	0	0	4	2	2	2
0	5	5	5	5	5	5	5	5	5	5				
М	3	3	3	3	3	3	1	2	2	3				
Е	3	3	3	3	3	3	3	3	2	2				
N	3	3	3	3	3	3	3	3	3	1				
Q	3.002	3.002	3.002	3.002	3.002	3.002	2.4422	2.712	2.4422	2.46				

Expert Less experience

Home Healthcare Routing and Scheduling Optimization

Home health care routing and scheduling in densely populated communities considering complex human behaviours

Home health care routing and scheduling in densely populated communities considering complex human behaviours, Computers & Industrial Engineering Volume 182, August 2023, 109332

53

Radiotherapy Treatment Scheduling Optimization

Artificial intelligence in radiation oncology. *Nat Rev Clin Oncol* **17**, 771–781 (2020). https://doi.org/10.1038/s41571-020-0417-8

54

Radiotherapy Treatment Scheduling Optimization

Artificial intelligence in radiation oncology. *Nat Rev Clin Oncol* **17**, 771–781 (2020). https://doi.org/10.1038/s41571-020-0417-8

Patient Multi-appointment Scheduling Optimization

A multi-appointment patient scheduling system with machine learning and optimization, Decision Analytics Journal Volume 10, March 2024, 100392

Optimization in Healthcare Supply Chain

Pharmaceutical Inventory Optimization

Vaccine Supply Chain Optimizatio

A robust vaccine supply chain model in pandemics: Case of Covid-19 in Iran, Computers & Industrial Engineering Volume 183, September 2023, 109465

59

A lateral resupply blood supply chain network design under uncertainties, Applied Mathematical Modelling Volume 93, May 2021, Pages 165-187

Diet Optimization

HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods, <u>Scientific</u> <u>Reports</u> volume 9, Article number: 9237 (2019)

Optimization and Big Data Analytics

Optimization for radioligand Treatment

Optimization of a breast cancer treatment protocol

optimization problem with two objectives: minimizing tumor burden an minimizing drug toxicity.

global optimization method for skin cancer segmentation

New Auxiliary Function with Properties in Nonsmooth Global Optimization for Melanoma Skin Cancer Segmentation, Biomed Res Int

Optimization of drug scheduling for chemotherapy with reducing drug toxicity

Optimization of drug scheduling for cancer chemotherapy with considering reducing cumulative drug toxicity, <u>Volume 9, Issue 6</u>, June 2023

Swarm Intelligence

Wearable for wellness monitoring

SMART BIOSENSORS

Blood pressure monitor

0

Cell population biosensor

A digital bandage for vitals signs

A saliva-based glucose biosensor

Pregnancy test biosensor

A blood- sugar monitor

A FitBit band

A glucometer

Protein Folding

Early Detection of Disease

Multi-omics Data

Al and Infectious disease

Optimization in drug delivery

Clinical decision support

Precision Medicine

Precision Medicine

Development of disease models

Predictive analytics

• predict a particular developing a certain disease allowing for earlier intervention and treatment.

Disease Risk Assessment

Helping in Medical Decision Making

Inside the operation room, precision, timely assistance, and the surgeon's expertise are the key to success.

Uncertainty in Decision Making

Cooperative Decision Making

High Complexity

interrelationships

Time Constraint

Reliable and effective

Brain-implanted AI chip

Treating brain disorders using implants

Lawrence Livermore Laboratory scientists are developing a treatment for brain disorders, such as PTSD, using microprocessors to control implanted electrode arrays. Here's how they work:

Robotics and Automation

control prosthetic limbs

linking the human brain to an external AI system

neural interface

مریک انتخاب این ایران دانتگاه علوم بزشگی و خدمات بهداشتی، دسانی ایران

Nuclear Cardiology and optimization

New types of Breast Cancer Biopsy

S1 Volatile biomarker S2 Supervised machine Sensor arrays learning analysis S32 Breath biopsy Breast cancer cells

Sensor responses

Breath biopsy of breast cancer using sensor array signals and machine learning analysis, Scientific Reports volume 11, Article number: 103 (2021) 88

Al in Ophthalmology

[1] A. Rao Et al., "Accessible artificial intelligence for ophthalmologists," *Eye*, vol. 36, pp. 683, 2022.
[2] S. Jeon Et al., "AI papers in ophthalmology made simple," *Eye*, vol. 34, pp. 1947–1949, 2020. 89

[1] T. J. Loftus Et al., "Artificial intelligence-enabled decision support in nephrology," *Nature Reviews Nephrology*, vol. 18, pp. 452–465, 2022. 90

AI in Otolaryngology

[1] N. A. Lesica Et al., "Harnessing the power of artificial intelligence to transform hearing healthcare and research," *Nature Machine Intelligence*, vol. 3, pp. 840–849, 2021. 91

Optimization and Obstetrics and Gynecology

Automatic segmentation of the nuchal membrane and the edge of the soft tissue overlying the cervical spine

Calculates the minimum vertical distance between the two lines and computes the

endometriosis

Optimization in Pediatrics

[1] Sitek Et al., "Artificial intelligence in the diagnosis of necrotising enterocolitis in newborns," *Pediatric Research*, 2022.

[2] H. Liang Et al., "Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence," *Nature Medicine*, vol. 25, pp.433–438, 2019.

[3] L. A. Knake Et al., "Artificial intelligence in pediatrics: the future is now," *Pediatric Research*, 2022.

[1]N. Miyaguchi Et al., "Predicting anesthetic infusion events using machine learning," *Scientific Reports*, vol. 11, No. 23648, 2021.

Optimization and Orthopedics

The advances of topology optimization techniques in orthopedic implants

A prognostic risk score for development and spread of chronic pain

Benefits of Al

Ethical concerns

Note that!!

- AI may not replace human doctors.
- Since doctors are trained to not only diagnose and treat diseases but also to provide emotional support to patients.
- AI cannot replace the empathy and compassion that doctors bring to their work.

Nasibeh Rady Raz, Ph.D.

Department of Artificial Intelligence in Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

MA, Ph.D., and Postdoc in Artificial Intelligence and Robotics Website: http://radyraz.student.um.ac.ir/

Email: radyraz.n@iums.ac.ir , radyraz@mail.um.ac.ir,

radyraz@yahoo.com

Research Interest:

Artificial Intelligence, Artificial Intelligence in Medicine, Complex Systems, Biomimicry, Cognitive Science, Swarm Intelligence, Nanomedicine, Targeted Drug Delivery, Early Detection of Disease, Swarm Nano Robotics, Cancer Research, Fuzzy Logic and Control, Soft Computing, Neural Networks, Machine Learning, Multi-agent Systems, Distributed Decision Making, Biomarkers, Biophysics, Nature Inspired Algorithms, Computational Cellular/Molecular Biology, Protein Folding